syntheses. The effects of anomalous dispersion were included in F_c (Cromer & Ibers, 1974).

Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71226 (9 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: DU1038]

References

- Abrahams, S. C. & Bernstein, J. L. (1967). J. Chem. Phys. 46, 3776-3782.
- Bertaut, E. F., Buisson, G., Durif, A., Mareschal, A., Montmory, M. C. & Quezel-Ambrunaz, S. (1965). Bull. Soc. Chim. Fr. pp. 1132–1137.
- Buisson, G. (1973). Phys. Status Solidi A, 17, 191-198.
- Buisson, G. (1977). Acta Cryst. B33, 1031-1034.
- Cromer, D. T. & Ibers, J. A. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- Euzen, P., Léone, P., Palvadeau, P., Queignec, M. & Rouxel, J. (1992). Mater. Res. Bull. 27, 1295–1300.
- Euzen, P., Léone, P., Mansot, J. L., Bonneau, P., Queignec, M. & Palvadeau, P. (1992). *Mater. Res. Bull.* 27, 1423–1430.
- Euzen, P., Palvadeau, P., Queignec, M. & Rouxel, J. (1991). C. R. Acad. Sci. 312, 367–372.
- Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 4. Enraf-Nonius, Delft, The Netherlands.
- Gardner, P. P., Wilkinson, C., Forsyth, J. B. & Wanklyn, B. M. (1988). J. Phys. C, 21, 5653-5661.
- Quezel-Ambrunaz, S., Bertaut, E. F. & Buisson, G. (1964). C. R. Acad. Sci. 258, 3025–3028.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1993). C49, 1877-1879

Structure of Tl₂Mo₂P₂O₁₁

A. GUESDON, M. M. BOREL, A. GRANDIN, A. LECLAIRE AND B. RAVEAU

Laboratoire CRISMAT, ISMRa, Université de Caen, Boulevard du Maréchal Juin, 14050 Caen CEDEX, France

(Received 22 December 1992; accepted 29 April 1993)

Abstract

Dimolybdenum dithallium diphosphate, $Tl_2Mo_2P_2O_{11}$, is isotypic with $K_2Mo_2P_2O_{11}$. Its framework is built from the original $Mo_2P_2O_{15}$ unit, formed by one Mo_2O_{11} group sharing four of its corners with two PO_4 tetrahedra, leading to $[Mo_2P_2O_{13}]_{\infty}$ chains running along c. The

© 1993 International Union of Crystallography Printed in Great Britain – all rights reserved $[Mo_2P_2O_{11}]_{\infty}$ framework forms two different intersecting tunnels running along c and $\langle 110 \rangle$, where the TI⁺ ions are located.

Comment

The synthesis and structure determination of the title compound were undertaken in order to test the possible replacement of potassium by thallium in the phase K₂Mo₂P₂O₁₁ (Gueho, Borel, Grandin, Leclaire & Raveau, 1993). The crystals of the new phase $Tl_2Mo_2P_2O_{11}$ were synthesized from the nominal composition Tl₂Mo₂P₂O₁₁ heated at 1123 K for one day in an evacuated silica ampoule and cooled at $2 \text{ K} \text{ h}^{-1}$ to 923 K. Finally, the sample was quenched to room temperature and brown crystals were extracted. The phosphate $Tl_2Mo_2P_2O_{11}$ is isotypic with $K_2Mo_2P_2O_{11}$, *i.e.* its framework is built from Mo₂P₂O₁₅ units, formed by one Mo₂O₁₁ group sharing four of its corners with two PO₄ tetrahedra along c, leading to $[Mo_2P_2O_{13}]_{\infty}$ chains running along c. Laterally in the (001) plane, the $[Mo_2P_2O_{13}]_{\infty}$ columns share the corners of their polyhedra leading to the three-dimensional framework $[Mo_2P_2O_{11}]_{\infty}$. This framework forms two different intersecting tunnels running along c and $\langle 110 \rangle$. Like the potassium cations in $K_2Mo_2P_2O_{11}$, the Tl cations are distributed over three kinds of sites. The Tl(1) cations are located on the symmetry centre and exhibit eightfold coordination with Tl-O distances ranging from 2.73 (1) to 2.90 (1) Å; they are strongly linked to the surrounding O atoms, in agreement with the value of their thermal factors (close to 1.60 Å^2). The Tl(2) cations located in the [001] tunnels are characterized by ninefold coordination with large TI-O distances ranging from 2.80 (1) to 3.34 (1) Å. The Tl(3) cations

Fig. 1. Projection of Tl₂Mo₂P₂O₁₁ along [001].

O(3)

located near the axis of the (110) tunnels sit in the [001] tunnels and are split over two positions with respect to the symmetry centre. This cation is characterized by sevenfold coordination with Tl-O distances ranging from 2.84 (1) to 3.26 (1) Å. The high values of the thermal factors of Tl(2) and Tl(3) (3.69 and 4.78 Å, respectively) are in agreement with the large Tl-O distances for these cations.

O(3)	0.269 (1)	0.054 (1)	0.317 (1)	1.2 (2)*
O(4)	0.526(1)	0.001 (1)	0.221 (1)	1.0 (2)*
O(5)	0.192 (1)	0.192 (1)	0.095 (1)	0.8 (2)*
O(6)	0.443 (1)	0.258 (1)	0.238 (1)	0.7 (2)*
O(7)	-0.073 (1)	0.265 (1)	0.066 (1)	1.3 (2)*
O(8)	-0.024 (1)	0.480(1)	0.225 (1)	1.1 (2)*
O(9)	0.135 (1)	0.449 (1)	0.006(1)	0.9 (2)*
O(10)	0.072 (1)	0.216 (1)	0.320(1)	1.0 (2)*
O(11)	0.247 (1)	0.408 (1)	0.272 (1)	1.1 (2)*

* Atoms refined isotropically.

Table 2. Geometric parameters (Å, °)

Experi	mental				Mo(1) - O(1)	1.68 (1)	O(7)-O(11)	3.83 (2)
Crystal	data				$M_0(1) = O(2)$	2.05 (1)	O(8) - O(9)	2.87 (2)
					Mo(1) = O(3) Mo(1) = O(4)	2.10(1) 2.08(1)	O(8) = O(10) O(8) = O(11)	2.90(2)
MO ₂ I I ₂	P_2O_{11}	Mo	$K\alpha$ radiation		Mo(1) = O(4) Mo(1) = O(5)	1.87(1)	O(0) = O(11) O(9) = O(10)	4.04 (2)
$M_r = 83$	88.6	$\lambda =$	0.71073 A		Mo(1)—O(6)	2.20(1)	O(9)—O(11)	2.77 (2)
Monocl	inic	Cel	l parameters fi	rom 25	Mo(2)O(5)	1.86(1)	O(10)-O(11)	2.71 (2)
$P2_1/c$		r	eflections		Mo(2)—O(7)	1.70 (1)	$O(2^{i}) - O(4^{ii})$	2.53 (2)
a = 9.94	45 (1) Å	$\theta =$	18-22°		Mo(2)—O(8)	2.10(1)	$O(2^{i}) - O(6)$	2.49 (2)
b = 10.	156 (1) Å	μ =	35.3 mm^{-1}		$M_0(2) = O(9)$ $M_0(2) = O(10)$	2.04 (1)	$O(2^{i}) = O(11)$	2.54 (2)
$c = 9.9^{\circ}$	74 (2) Å	T =	294 K		$M_0(2) = O(10)$ $M_0(2) = O(11)$	2.05(1) 2.15(1)	$O(4^{ii}) - O(11)$	2.32(2) 2.44(2)
B = 97	$64(1)^{\circ}$	Pol	vhedron		$P(1) - O(2^{i})$	1.53 (2)	O(6) - O(11)	2.53 (2)
V = 009		0.0	$77 \times 0.051 \times$	0.051 mm	$P(1) - O(4^{ii})$	1.56(1)	$O(3) - O(9^{i})$	2.46 (2)
7 - 4		Bro	wn	•••••	P(1)—O(6)	1.53 (1)	$O(3) - O(8^{m})$	2.53 (2)
L - 4	50 M	Cn	stal source: so	lid-state	P(1) = O(11) P(2) = O(2)	1.52(1)	O(3) - O(10)	2.57 (2)
$D_x = 5.1$	58 Mg m		vnthesis	ila state	P(2) = O(3) $P(2) = O(8^{iii})$	1.55(1)	$O(8^{ii}) = O(9^{i})$	2.52(2) 2.47(2)
		3	ynuicsis		$P(2) = O(8^{i})$	1.54 (1)	$O(9^{i}) - O(10)$	2.52 (2)
D	11				P(2)-O(10)	1.54 (1)	$Tl(1) - O(1^{iv})$	2.90(1)
Data co	llection				O(1)—O(2)	2.77 (2)	Tl(1)—O(1)	2.90(1)
Enraf-N	Ionius CAD-4	136	4 observed ref	lections	O(1)—O(3)	2.81 (2)	$Tl(1) - O(5^{iv})$	2.81 (1)
diffra	ctometer	[$I \geq 3\sigma(I)$]		O(1) - O(4) O(1) - O(5)	2.74 (2)	TI(1) = O(5) TI(1) = O(7)	2.81(1)
$\omega - 2/3\theta$	scans of width	$(1 + \theta_{ma})$	$x = 45^{\circ}$		O(1) = O(3) O(1) = O(6)	2.74 (2)	TI(1) = O(7) $TI(1) = O(7^{iv})$	2.89(1)
0.35t	$(an\theta)^{\circ}$	h =	$-16 \rightarrow 15$		O(2) - O(3)	4.13 (2)	$TI(1) = O(8^{v})$	2.33(1) 2.73(1)
Absorpt	ion correction:	<i>k</i> =	$0 \rightarrow 16$		O(2)—O(4)	3.01 (2)	$Tl(1) - O(8^{iii})$	2.73 (1)
analv	tical	<i>l</i> =	$0 \rightarrow 15$		O(2)O(5)	2.83 (2)	Tl(2)—O(1 ⁱⁱ)	3.16(1)
T _{min} :	$= 0.18009$, $T_{\rm m}$	= 3.s	tandard reflecti	ons	O(2)O(6)	2.89 (2)	T1(2) - O(4)	2.93(1)
0.266	5	ax US	requency: 50 r	nin	O(3) - O(4)	2.89 (2)	TI(2) = O(6)	3.21(1)
00.200	on an	ana i	ntensity variati	an < 0.5%	O(3) = O(3)	2.03 (2)	$T_1(2) = O(7^{vii})$	3.12(1)
0005 III			inclusity variati	011. < 0.5 %	O(4) - O(5)	3.91 (2)	$T_{1}(2) = O(7^{ix})$	3.34(1)
8805 m	aependent relie	ctions			O(4) - O(6)	2.75 (2)	$T1(2) - O(9^{ix})$	3.20(1)
Defuen					O(5)—O(6)	2.78 (2)	$Tl(2) = O(10^{vi})$	3.12(1)
керпет	eni				O(5)—O(7)	2.71 (2)	$T1(2) - O(11^{tt})$	2.80(1)
Refinem	ient on F	Δho	_{max} = 3.9 e Å⁻	-3	O(5)—O(8)	3.95 (2)	TI(3) = O(2')	2.91 (1)
Final R	= 0.044	$\Delta \rho$	$_{\rm min}$ = $-2 \ e \ {\rm \AA}^-$	-3	O(5) = O(9)	2.79(2)	$TI(3) = O(3^{-1})$ TI(3) = O(3)	2.84(1)
wR = 0.	047	Ext	inction correct	ion: none	O(5) = O(10) O(5) = O(11)	2.82 (2)	$T_{1}(3) = O(3)$ $T_{1}(3) = O(4^{vii})$	2.94(1)
S = 1.00	01	Atc	mic scattering	factors	O(7)—O(8)	2.70 (2)	Tl(3)O(4)	2.97 (1)
1364 re	flections	f	rom Internatio	nal Tables	O(7)O(9)	2.90 (2)	Tl(3)—O(6)	3.26(1)
105 par	ameters	f.	or Y-ray Cryst	alloaranhy	O(7)—O(10)	2.79 (2)	Tl(3)—O(6 ¹)	3.04 (1)
$m = E_{oi}$	$n(Q(\lambda))$	J	1074 Vol 117	unogrupny	O(1)—Mo(1)—O(2)	9.54 (6)	O(7)—Mo(2)—O(9)	101.4 (6)
w = rst	$(0/\lambda)$	(19/4, 101.11)		O(1) - Mo(1) - O(3)	95.8 (6)	O(7) - Mo(2) - O(10)	95.7 (6)
$(\Delta/\sigma)_{\rm m}$	ax < 0.004				O(1) - Mo(1) - O(4)	92.9 (6)	O(7) - Mo(2) - O(11)	170.4 (6)
T-1-1.	E		1· , 1	• • •	O(1) - MO(1) - O(3) O(1) - MO(1) - O(6)	101.2 (6)	O(8) - MO(2) - O(9) O(8) - MO(2) - O(10)	07.0(3) 911(5)
ladie	. Fractional	atomic cool	rainates and	equivalent	O(2) - Mo(1) - O(3)	168.7 (5)	O(8) - Mo(2) - O(11)	81.5 (5)
	isotropic	thermal par	ameters (Å ²)		O(2) - Mo(1) - O(4)	93.7 (5)	O(9)—Mo(2)—O(10)	162.8 (5)
					O(2)-Mo(1)-O(5)	92.6 (5)	O(9)-Mo(2)-O(11)	82.6 (5)
$B_{\rm eq} = (4/3)[a^2\beta_{11} + b^2\beta_{22} + c^2\beta_{33} + (2ab\cos\gamma)\beta_{12} + (2a\cos\beta)\beta_{13}$			O(2) - Mo(1) - O(6)	85.5 (5)	O(10) - Mo(2) - O(11)	80.3 (5)		
		+ $(2bc\cos\alpha)\beta$	23].		O(3) - MO(1) - O(4) O(3) - MO(1) - O(5)	87.0(5)	$O(2^{i}) - P(1) - O(4^{i})$ $O(2^{i}) = P(1) - O(6)$	109.9 (7)
	x	v	z	Bea	O(3) - MO(1) - O(6)	83.7 (5)	$O(2^{i}) = P(1) = O(0)$ $O(2^{i}) = P(1) = O(11)$	112 4 (8)
Mo(1)	0.3448 (1)	0.0853 (2)	0.1325 (2)	0.67 (2)	O(4) - Mo(1) - O(5)	164.0 (5)	$O(4^{ii}) - P(1) - O(6)$	109.2 (7)
Mo(2)	0.0775 (1)	0.3219 (2)	0.1467 (2)	0.71 (2)	O(4)—Mo(1)—O(6)	79.9 (5)	$O(4^{ii}) - P(1) - O(11)$	104.6 (7)
P(1)	0.3962 (4)	0.3755 (5)	0.3154 (5)	0.87 (8)	O(5) - Mo(1) - O(6)	86.0 (5)	O(6)—P(1)—O(11)	111.9 (7)
r(2) TI(1)	0.1200 (4)	0.0758 (5)	0.3333 (3)	0.09 (7)	U(5) - Mo(2) - U(7)	99.4 (6)	$O(3) - P(2) - O(8^{m})$	111.0 (7)
TI(2)	0.7572 (1)	0.1776(1)	0.2865 (1)	3.69 (2)	O(5) - MO(2) - O(8) O(5) - MO(2) - O(9)	91 2 (5)	O(3) = P(2) = O(10) O(3) = P(2) = O(10)	100.4 (7)
TI(3)	0.5273 (3)	0.0798 (3)	0.5077 (2)	4.78 (5)	O(5) - Mo(2) - O(10)	87.2 (5)	$O(8^{iii}) - P(2) - O(9^{i})$	110.3 (7)
O(1)	0.287 (1)	-0.057 (1)	0.061 (1)	1.4 (2)*	O(5)-Mo(2)-O(11)	89.2 (5)	$O(8^{iii}) - P(2) - O(10)$	106.5 (7)
O(2)	0.427 (1)	0.152 (1)	-0.033 (1)	1.1 (2)*	O(7)-Mo(2)-O(8)	89.9 (6)	$O(9^{i}) - P(2) - O(10)$	109.7 (7)

Symmetry codes: (i) $x, \frac{1}{2} - y, \frac{1}{2} + z$; (ii) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (iii) $-x, y - \frac{1}{2}, \frac{1}{2} - z$; (iv) -x, -y, -z; (v) $x, \frac{1}{2} - y, z - \frac{1}{2}$; (vi) 1 + x, y, z; (vii) 1 - x, -y, 1 - z; (viii) $1 + x, \frac{1}{2} - y, \frac{1}{2} + z$; (ix) $1 - x, y - \frac{1}{2}, \frac{1}{2} - z$.

Table 3. Refined displacement parameters $(Å^2)$

The form of the anisotropic displacement parameter is $\exp[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + \beta_{12}hk + \beta_{13}hl + \beta_{23}kl]$.

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Mo(I)	0.0013 (1)	0.0017(1)	0.0021 (1)	0.0004 (2)	0.0004 (2)	-0.0001 (3)
Mo(2)	0.0016(1)	0.0016(1)	0.0022 (1)	0.0003 (2)	0.0006 (2)	0.0004 (3)
P(1)	0.0019 (4)	0.0022 (4)	0.0027 (4)	-0.0001 (6)	0.0023 (7)	-0.0002 (7)
P(2)	0.0026 (3)	0.0012 (3)	0.0017 (4)	-0.0006 (6)	0.0016 (6)	0.0001 (7)
Tl(1)	0.00373 (8)	0.00425 (9)	0.00384 (9)	-0.0010 (2)	-0.0009 (2)	-0.0016 (2)
TI(2)	0.00808 (9)	0.00564 (8)	0.0144 (2)	- 0.0024 (2)	0.0038 (2)	-0.0025 (2)
TI(3)	0.0153 (3)	0.0162 (3)	0.0050 (2)	0.0206 (4)	0.0078 (4)	0.0067 (5)

Calculations were performed using a MicroVAX II computer with the *SDP* system (Frenz, 1982). Drawings were prepared using *STRUPLO*84 (Fisher, 1985).

Lists of structure factors have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71289 (12 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: DU1040]

References

Fisher, R. X. (1985). J. Appl. Cryst. 18, 258-262.

- B. A. Frenz & Associates, Inc. (1982). SDP Structure Determination Package. College Station Texas, USA.
- Gueho, C., Borel, M. M., Grandin, A., Leclaire, A. & Ravcau, B. (1993). J. Solid State Chem. 104, 202-208.

Acta Cryst. (1993). C49, 1879-1881

Structure of Sr₃V₁₀O₂₈.22H₂O

J. M. NIETO, P. SALAGRE, F. MEDINA AND J. E. SUEIRAS

Departament de Química, Facultad de Química, Universitat Rovira i Virgili, Pza. Imperial Tarraco, 1. E-43005 Tarragona, Spain

X. SOLANS

Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Universitat de Barcelona, Martí i Franqués s/n, E-08028 Barcelona, Spain

(Received 14 October 1992; accepted 2 April 1993)

Abstract

The crystal structure of hydrated strontium decavanadate, $Sr_3V_{10}O_{28}.22H_2O$, has been determined. It contains two types of strontium ions: the first is

coordinated to seven water molecules which define a pentagonal bipyramid; the second bonds to five molecules of water and three O atoms of different decavanadate ions, thereby bridging between decavanadate ions to produce layers of formula $[Sr_2V_{10}O_{38}H_{20}]_n$ on the crystallographic plane (100). The heptacoordinated Sr and the five molecules of water associated with it are located between the different layers.

Comment

The complicated chemistry which arises from the condensation reactions of aqueous vanadate ions and other transition-metal oxo anions depends on the pH of the solution in which the reactions occur. The more acidic the solution the greater is the molecular weight of the isopolynuclear complex anions formed. The following vanadates may be obtained: orthovanadates (pH > 12.6), pyrovanadates (pH 12.6–9.6), metavanadates (pH 9.6–6.5), polyvanadates (pH 6.5–2) and pervanadyl (pH < 0.8). Among the polyvanadates, the decavanadates (salts of the V₁₀O₂^{6–} ion) have particular mining and chemical interest as they are found in uranium ores.

Norblad (1875) described $Ba_3V_{10}O_{28}.19H_2O$ among other polyvanadates. The crystal structures of synthetic and natural forms of pascoite $Ca_3V_{10}O_{28}.17H_2O$ have been determined (Marvin & Magin, 1959; Swallow, Ahmed & Barnes, 1966), as have those of double salts like $K_2Mg_2V_{10}$ - $O_{28}.16H_2O$, $Cs_2Mg_2V_{10}O_{28}.16H_2O$ and $K_2Zn_2V_{10}$ - $O_{28}.16H_2O$ (Weeks, Cisney & Sherwood, 1951; Evans, 1966) and that of the protonated species $[(C_6H_5)_4P]_3H_3V_{10}O_{28}.4CH_3CN$ (Day, Klemperer & Maltbie, 1987).

The title compound was prepared by the addition of excess vanadium pentoxide to a suspension of strontium hydroxide in boiling water, adjusting the pH to about 5 with acetic acid, until the solution became ochre in colour, followed by immediate filtration and crystallization of the filtrate. Crystals were obtained from solutions in distilled water and dried in air at room temperature. Vanadium content was determined spectrophotometrically by the peroxide method (Sandell, 1950) and the strontium content was determined by microgravimetry, giving a chemical analysis and atomic ratio V:Sr = 9.9:3.0. The empirical formula is also consistent with elemental analyses for O and H.

The Sr(1) atom has a B_{eq} value double that of Sr(2). Refinement of its occupancy factor led to a value of 1; slight disorder of this atom around the twofold axis may explain its relatively large B_{eq} value. As only five H atoms were observed in difference syntheses, it was difficult to distinguish between oxide and water O atoms. The presence of